期刊简介
本刊是由中国航天科工集团公司主管, 由航天科工集团十七所主办。它是仿真技术领域的综合性科技期刊。98年起已列入国家科技部中国科...【详细查看】
过刊浏览
信息公告
- 15/01 中国航天科工信...
- 14/09航天工业机关服务...
- 14/10航天信息股份有限...
- 14/12湖南航天工业总公...
- 14/08中国航天科工集团...
- 14/07中国航天科工集团...
- 14/06 南京航天管理干...
改进的极限学习机在癫痫脑电分类中的应用
【出 处】:《
计算机仿真
》
CSCD
2014年第31卷第6期 343-346页,共5页
【作 者】:
王杰
;
李牧潇
【摘 要】
研究癫痫脑部疾患的脑电分类识别问题,由于癫痫是大脑神经元异常和过度的超同步化放电所造成的临床现象,脑电图(EEG)是目前最常用的监测与诊断癫痫疾病的方法。由脑电图仪监测得到的脑电信号数量巨大,单凭人工的诊断十分耗时,且有可能因为主观因素而产生误判。为了提高对癫痫脑电信号的自动识别和诊断的准确性,提出了样本熵(SampEn)与AR模型特征提取以及自适应差分进化极限学习机(SaE—ELM)相结合的方法来达到识别癫痫脑电信号的目的。实验表明采用上述特征提取及分类算法可达到97%的分类准确度,验证了上述方法的有效性。
相关热词搜索: 癫痫脑电 样本熵 自适应差分进化极限学习机 Epileptic EEG SampEn SaE-ELM
上一篇:一种改进的基于SVM与Meanshift的目标跟踪
下一篇:企业安全生产管理新研究