期刊简介
本刊是由中国航天科工集团公司主管, 由航天科工集团十七所主办。它是仿真技术领域的综合性科技期刊。98年起已列入国家科技部中国科...【详细查看】
过刊浏览
信息公告
- 15/01 中国航天科工信...
- 14/09航天工业机关服务...
- 14/10航天信息股份有限...
- 14/12湖南航天工业总公...
- 14/08中国航天科工集团...
- 14/07中国航天科工集团...
- 14/06 南京航天管理干...
一种应用PSO优化RBF神经网络的方法
【出 处】:《
计算机仿真
》
CSCD
2014年第31卷第11期 269-272页,共4页
【作 者】:
张健
;
刘定一
【摘 要】
RBF神经网络算法是一种常用的数据训练方法,在该训练过程中,如何选取更合理的个体作为RBF神经网络的神经元,直接关系到该数据训练方法的性能。利用传统的RBF神经网络模型进行数据训练,由于不同的神经元之间的差异性较小,造成建立的RBF神经网络集成模型的精确度过低。为此,提出应用PSO优化RBF神经网络的方法。动态构造PSO优化RBF神经网络结构,针对不同的动态构造方法进行分类,得到网格删除法、网络构造法和综合法等不同的动态构造方法,在动态构造的基础上,建立引用PSO优化RBF神经网络模型,计算RBF神经网络中的粒子变量,获取对应的适应性值,得到RBF神经网络的输出结果,实现应用PSO优化的RBF神经网络建模。实验结果表明,利用改进算法进行RBF神经网络构建,能够降低RBF神经网络的数据训练误差,满足实际需求。
相关热词搜索: 粒子群 神经网络 差异性 The particle swarm Neural network Difference
上一篇:通用日晷三维仿真系统的开发与应用
下一篇:基于回溯思想的多面体面追踪算法