期刊简介
本刊是由中国航天科工集团公司主管, 由航天科工集团十七所主办。它是仿真技术领域的综合性科技期刊。98年起已列入国家科技部中国科...【详细查看】
过刊浏览
信息公告
- 15/01 中国航天科工信...
- 14/09航天工业机关服务...
- 14/10航天信息股份有限...
- 14/12湖南航天工业总公...
- 14/08中国航天科工集团...
- 14/07中国航天科工集团...
- 14/06 南京航天管理干...
基于机器学习的地震异常数据挖掘模型
【出 处】:《
计算机仿真
》
CSCD
2014年第31卷第11期 319-322页,共4页
【作 者】:
韩莹
;
李姗姗
;
陈福明
【摘 要】
研究基于机器学习的地震异常数据挖掘方法。在进行地震异常数据挖掘过程中,由于地震监测系统信号时变性及监测环境的不稳定性,采用传统的方法进行挖掘,其挖掘的精确度较低。为此,提出基于机器学习的地震异常数据挖掘方法。根据机器学习的相关理论获取标准方程组和最小均方误差值,实现异常数据挖掘最优模型的构建,通过计算数据的特征向量,建立地震监测数据特征库,依据获取的概率值实现对监测数据的正确判断,从而完成对地震异常数据的有效挖掘。实验结果表明,利用基于机器学习的地震异常数据挖掘方法,能够有效的提高地震异常数据的挖掘准确度与挖掘效率,保证了地震监测系统的有效性。
相关热词搜索: 机器学习 地震监测 异常数据挖掘 Machine learning Earthquake monitoring Abnormal data mining
上一篇:基于本体的平面几何规则自动生成方法的研究
下一篇:网络流量预测模型仿真分析与研究