期刊简介
本刊是由中国航天科工集团公司主管, 由航天科工集团十七所主办。它是仿真技术领域的综合性科技期刊。98年起已列入国家科技部中国科...【详细查看】
过刊浏览
信息公告
- 15/01 中国航天科工信...
- 14/09航天工业机关服务...
- 14/10航天信息股份有限...
- 14/12湖南航天工业总公...
- 14/08中国航天科工集团...
- 14/07中国航天科工集团...
- 14/06 南京航天管理干...
基于高斯过程回归的上市股价预测模型
【出 处】:《
计算机仿真
》
CSCD
2013年第30卷第1期 293-296页,共5页
【作 者】:
杨振舰
;
夏克文
【摘 要】
在新股上市价格的科学优化预测问题的研究中,由于金融数据复杂,特别是新股价格存在极强的无序性。传统股票价格预测方法只能采用线性变化规律进行准确预测,无法对非线性股票价格进行有效建模,降低股价预测精度。为了提高股票价格预测精度,提出一种高斯过程回归的新股上市价格预测模型,通过提取影响新股上市价格形成的指标因素,用其训练纳斯达克(NASDAQ)新股上市价格的历史数据,以粒子群算法优化高斯过程的超参数来预测新股上市价格。将8家公司的上市股票作为实例进行分析,预测结果表明,高斯过程回归的方法提高股票价格预测精度,能够有效地适用于新股上市价格预测。
相关热词搜索: 新股上市价格 股价预测 高斯过程回归 纳斯达克 粒子群算法 Initial public offerings(IPO) Stock forecast Gaussian process regression(GPR) NASDAQ Parti- cle swarm optimization (PSO)