期刊简介
本刊是由中国航天科工集团公司主管, 由航天科工集团十七所主办。它是仿真技术领域的综合性科技期刊。98年起已列入国家科技部中国科...【详细查看】
过刊浏览
信息公告
- 15/01 中国航天科工信...
- 14/09航天工业机关服务...
- 14/10航天信息股份有限...
- 14/12湖南航天工业总公...
- 14/08中国航天科工集团...
- 14/07中国航天科工集团...
- 14/06 南京航天管理干...
基于改进型PCA和LDA融合算法的人脸图像识别
【出 处】:《
计算机仿真
》
CSCD
2013年第30卷第1期 415-418页,共5页
【作 者】:
伊力哈木·亚尔买买提
【摘 要】
研究提高人脸识别率问题,因人脸图像易受光照条件、人脸丰富的表情变化以及周围复杂环境干扰等因素的负面影响,导致其识别准确度很低,影响其识别效果。鉴于此,提出了改进型PCA和LDA融合算法人脸图像识别方法,首先通过在改进PCA算法中结合基于标准差和局部均值的图像增强处理,使其可以有效调节光照不均匀对人脸识别所造成的负面影响,进而拓展了PCA算法的应用条件范围,然后将改进的PCA算法与LDA算法相结合,运用改进的PCA算法对训练图像降维,最后再对降维以后的特征采用LDA算法,训练出一个最具判别力的分类器,实验证明本文提出的方法对光照不均匀、表情变化的人脸具有一定的鲁棒性,具有很好的人脸识别性能,提高了其识别率,优于一般的PCA算法。
相关热词搜索: 人脸 全局特征 鲁棒性 Face Global features Robustness
上一篇:重金属污染场地电阻率法勘探的建模和仿真
下一篇:图像目标的特征提取技术研究