期刊简介
本刊是由中国航天科工集团公司主管, 由航天科工集团十七所主办。它是仿真技术领域的综合性科技期刊。98年起已列入国家科技部中国科...【详细查看】
过刊浏览
信息公告
- 15/01 中国航天科工信...
- 14/09航天工业机关服务...
- 14/10航天信息股份有限...
- 14/12湖南航天工业总公...
- 14/08中国航天科工集团...
- 14/07中国航天科工集团...
- 14/06 南京航天管理干...
基于BP神经网络的透明转发卫星功放预失真
【出 处】:《
计算机仿真
》
CSCD
2013年第30卷第9期 177-181页,共5页
【作 者】:
杨茂强
;
郭道省
;
潘小飞
【摘 要】
研究卫星通信功放性能优化问题,传统的预失真技术通常用来补偿地面功放的非线性失真或仅考虑卫星功放的失真补偿,线性化性能有限.为解决上述问题,提出了一种适合透明转发卫星的星地一体BP神经网络预失真算法.改进算法的学习结构同时考虑了卫星地球站固态功放和透明转发卫星功放的记忆非线性特性,利用带抽头延迟的BP神经网络作为预失真器,并结合收敛速度较快的Levenberg-Marquardt算法对其权值和阈值矢量进行自适应更新.仿真结果表明,经过神经网络预失真的星座图误差矢量幅度改善了84.67%,输出信号功率谱带外再生抑制提升近了13 dB,线性化效果十分显著.
相关热词搜索: 卫星通信 高功率放大器 记忆非线性失真 反向传播神经网络 预失真 Satellite communication High power amplifier Nonlinear distortion with memory Back propagation neural network (BPNN) Pre-distortion