期刊简介
本刊是由中国航天科工集团公司主管, 由航天科工集团十七所主办。它是仿真技术领域的综合性科技期刊。98年起已列入国家科技部中国科...【详细查看】
过刊浏览
信息公告
- 15/01 中国航天科工信...
- 14/09航天工业机关服务...
- 14/10航天信息股份有限...
- 14/12湖南航天工业总公...
- 14/08中国航天科工集团...
- 14/07中国航天科工集团...
- 14/06 南京航天管理干...
基于改进微粒群神经网络的油料储备预测
【出 处】:《
计算机仿真
》
CSCD
2013年第30卷第9期 314-317页,共5页
【作 者】:
周庆忠
[1] ;
曾慧娥
[2]
【摘 要】
根据油料储备历史数据样本进行油料储备预测,是实施油料保障有效举措.油料储备预测是具有不确定性、突变性的多变量复杂系统,预测难度大.为了解决采用传统预测法所存在的局限性,将微粒群优化算法与神经网络相融合,提出了改进微粒群神经网络的油料储备预测模型.利用神经网络自学习能力,捕捉预测系统非线性关系.将神经网络参数映射为实数码微粒,构造复合适应度函数.引入微粒距离系数,动态调整微粒速度和位置进化参数.借助微粒群优化算法较强全局搜索能力,训练神经网络参数,优化其结构,消除神经网络训练收敛慢、易陷入局部极值等现象.仿真实例表明,改进模型预测精确性评价指标良好,建模复杂度较低.
相关热词搜索: 油料储备 预测 微粒群优化 神经网络 Oil reserves Forecast Particle swarm optimization(PSO) Neural network(NN)
上一篇:基于改进Alopex算法的燃机中冷器优化设计
下一篇:基于神经网络的绝缘子故障诊断