期刊简介
本刊是由中国航天科工集团公司主管, 由航天科工集团十七所主办。它是仿真技术领域的综合性科技期刊。98年起已列入国家科技部中国科...【详细查看】
过刊浏览
信息公告
- 15/01 中国航天科工信...
- 14/09航天工业机关服务...
- 14/10航天信息股份有限...
- 14/12湖南航天工业总公...
- 14/08中国航天科工集团...
- 14/07中国航天科工集团...
- 14/06 南京航天管理干...
一种采用云自适应粒子群算法的盲源分离
【出 处】:《
计算机仿真
》
CSCD
2013年第30卷第9期 340-343页,共5页
【作 者】:
彭安洪
[1,2] ;
赖惠成
[1]
【摘 要】
针对大多盲源分离算法全局收敛性能不理想,收敛速度慢的缺陷,借鉴自适应粒子群算法的思想,利用云模型中云滴的随机性和稳定倾向性特点,提出一种云理论的自适应粒子群(CAPSO)盲源分离算法,以分离信号的峭度为目标函数,用自适应调整策略把粒子群分为三个子群,根据云方法修改普通子群的惯性权重,使惯性权重随着适应度值自适应调整.仿真结果表明,改进算法能完成含噪信号分离,并且有效地避免了早熟收敛,较基本PSO提高了全局搜索能力和收敛速度,分离效果好.
相关热词搜索: 盲源分离 惯性权重 云理论 云自适应粒子群算法 Blind source separation Inertia weight Cloud theory Cloud adaptive particle swarm optimization algorithm(CAPSO)