期刊简介
本刊是由中国航天科工集团公司主管, 由航天科工集团十七所主办。它是仿真技术领域的综合性科技期刊。98年起已列入国家科技部中国科...【详细查看】
过刊浏览
信息公告
- 15/01 中国航天科工信...
- 14/09航天工业机关服务...
- 14/10航天信息股份有限...
- 14/12湖南航天工业总公...
- 14/08中国航天科工集团...
- 14/07中国航天科工集团...
- 14/06 南京航天管理干...
基于小波神经网络的船舶缆绳载荷预测方法
【出 处】:《
计算机仿真
》
CSCD
2013年第30卷第9期 370-373页,共4页
【作 者】:
郑剑
;
白响恩
;
肖英杰
;
张浩
【摘 要】
在船舶缆绳载荷准确预测的研究中,由于船舶缆绳载荷不仅受到风、流、浪等环境因素的影响,还受到船舶的船型、受风面积、吃水大小等因素的共同影响,因此具有较强的随机性和复杂性,是一种非平稳的时间序列,传统的神经网络预测模型在进行负荷预测过程中,无法处理这种非平稳信号导致很难进行准确测量.提出一种基于小波神经网络的船舶缆绳载荷预测方法,算法结合小波分析的时频局部特性与聚焦特性和神经网络的自学习、自适应和推广能力,将小波基函数作为神经网络的隐含层节点的传递函数,建立小波神经网络预测模型,以船舶缆绳的采集数据作为模型的输入与输出,利用小波函数处理非平稳信号的能量,解决缆绳负荷的非线性问题,凭借神经网络小区域计算能力,对预测结果进行进一步优化.仿真结果表明,小波神经网络用于船舶缆绳载荷数据处理,精度满足要求,具有良好的适用性.
相关热词搜索: 缆绳载荷 小波分析 小波神经网络 非平稳时间序列预测 Mooring load Wavelet analysis Wavelet neutral network Forecasting of no-stationary time series
上一篇:基于三维图像动作识别算法研究
下一篇:基于余弦振荡器的四足机器人步态生成与仿真