期刊简介
本刊是由中国航天科工集团公司主管, 由航天科工集团十七所主办。它是仿真技术领域的综合性科技期刊。98年起已列入国家科技部中国科...【详细查看】
过刊浏览
信息公告
- 15/01 中国航天科工信...
- 14/09航天工业机关服务...
- 14/10航天信息股份有限...
- 14/12湖南航天工业总公...
- 14/08中国航天科工集团...
- 14/07中国航天科工集团...
- 14/06 南京航天管理干...
基于新式组合算法的上证综合指数预测
【出 处】:《
计算机仿真
》
CSCD
2013年第30卷第12期 203-207页,共5页
【作 者】:
刘健
[1,2] ;
何林
[1] ;
袁建华
[1] ;
王雪峰
[2]
【摘 要】
关于股票价格准确预测问题,借助股票价格指数,投资者可以掌握股市整体的发展动态。为了增加收益,降低风险,制定正确的投资决策,合理预测股指是必要的。然而传统预测方法存在方法单一、缺乏定性分析等不足,难以适应国内复杂的股票市场。为解决上述问题,在股市可以预测的前提下,从股市自身特点出发,提出了一种定性与定量相结合的新式组合算法。将粒子群优化(PSO)、非线性独立成分分析(NLICA)、BP神经网络三种算法相结合,建立上证综指预测模型,并通过计算机仿真进行模型验证。结果表明新式组合预测模型比传统方法的适应性和智能性更强,预测精度更高,在股市短期预测中具有一审实用价佰.
相关热词搜索: 股市预测 上证综合指数 粒子群优化 非线性独立成分分析 Stock market forecast Shanghai composite index Particle swarm optimization ( PSO ) Nonlinear inde- pendent component analysis