期刊简介
本刊是由中国航天科工集团公司主管, 由航天科工集团十七所主办。它是仿真技术领域的综合性科技期刊。98年起已列入国家科技部中国科...【详细查看】
过刊浏览
信息公告
- 15/01 中国航天科工信...
- 14/09航天工业机关服务...
- 14/10航天信息股份有限...
- 14/12湖南航天工业总公...
- 14/08中国航天科工集团...
- 14/07中国航天科工集团...
- 14/06 南京航天管理干...
遗传优化的GNNM在瓦斯涌出量预测中的应用
【出 处】:《
计算机仿真
》
CSCD
2012年第1期 119-122页,共4页
【作 者】:
秦勇
[1] ;
陈立潮
[1] ;
郭勇义
[2] ;
贺振武
[1]
【摘 要】
研究矿井瓦斯涌出量准确预测一直是煤矿安全生产中重点关注的问题。煤层瓦斯爆炸因受开发环境、矿层深度、天气等因素的影响,造成与瓦斯涌出量增大而引起的。针对传统预测模型在矿井瓦斯涌出量预测中存在建模困难、收敛速度慢、要求历史数据量大的问题,提出了一种遗传优化的灰色神经网络预测模型。模型利用灰色系统对数据量要求低的特点.将灰色系统理论与神经网络有机结合起来,建立灰色神经网络模型。并采用遗传算法对所建立模型的权值和阈值进行优化。采用模型对矿井瓦斯涌出量进行预测,实验表明,遗传优化的灰色神经网络模型,可以简化系统建模,并能提高瓦斯涌出量预测精度,有一定的实用价值。
相关热词搜索: 灰色神经网络模型 灰色系统 遗传算法 反向传播神经网络 瓦斯涌出量预测 Gray neural network model Grey system Genetic algorithm Back propagation neural network Predic-tion of gas emission