期刊简介
本刊是由中国航天科工集团公司主管, 由航天科工集团十七所主办。它是仿真技术领域的综合性科技期刊。98年起已列入国家科技部中国科...【详细查看】
过刊浏览
信息公告
- 15/01 中国航天科工信...
- 14/09航天工业机关服务...
- 14/10航天信息股份有限...
- 14/12湖南航天工业总公...
- 14/08中国航天科工集团...
- 14/07中国航天科工集团...
- 14/06 南京航天管理干...
基于机器学习反馈的车辆自动路况识别
【出 处】:《
计算机仿真
》
CSCD
2012年第1期 339-343页,共5页
【作 者】:
刘志鑫
;
王志海
【摘 要】
研究车辆路况自动识别的问题,提高识别的准确率和鲁棒性。针对车辆的路况自动识别系统极易受外界环境的影响.传统的基于PCA的路况识别方法在提取路况信息时无法避免恶劣天气等环境的影响,造成最终的识别不准确和鲁棒性不高的问题。为了克服这一难题,提出了基于机器学习的车辆路况自动识别系统。首先采用Haar小波特征提取方法,将受环境影响的路况图像中的有效特征准确提取并降维,然后利用支持向量机选择合适的特征参数。将特征参数输入到AdaBoost分类器中进行分类识别后就完成了最终的车辆路况自动识别,避免了传统方法自动识别受恶劣环境影响的问题。实验证明,这种方法能够有效克服外界环境的影响,准确完成车辆路况的自动识别,并且识别结果具有较好的鲁棒性和满意的效果。
相关热词搜索: 机器学习 自动识别 路况特征 Machine learning Automatic identification Traffic characteristics
上一篇:股票价格预测的建模与仿真研究
下一篇:物联网技术在道路交通安全预测中应用研究