期刊简介
本刊是由中国航天科工集团公司主管, 由航天科工集团十七所主办。它是仿真技术领域的综合性科技期刊。98年起已列入国家科技部中国科...【详细查看】
过刊浏览
信息公告
- 15/01 中国航天科工信...
- 14/09航天工业机关服务...
- 14/10航天信息股份有限...
- 14/12湖南航天工业总公...
- 14/08中国航天科工集团...
- 14/07中国航天科工集团...
- 14/06 南京航天管理干...
基于级联网络的短期电力负荷预测研究
【出 处】:《
计算机仿真
》
CSCD
2011年第28卷第1期 311-314页,共4页
【作 者】:
魏安静
;
田丽
;
凤权
【摘 要】
电力系统负荷预测通过对历史数据分析,预测未来需求,利用经典的Kohonen网络、Elman神经网络和粒子群优化算法建立级联网络预测模型,为了对电力系统短期精确预测,提出了处理非线性问题和解决负荷预测问题。对级联网络预测模型不但能够综合各种单一预测模型的优点,而且能够随时间的推移使结构不断变化,可以减少负荷预测的工作量。用三种神经网络模型进行短期电力负荷预测的仿真结果比较,验证了级联网络预测算法的有效性和良好的应用前景。
相关热词搜索: 级联网络 短期负荷预测 粒子群优化 仿真 Cascaded network Short-term load forecasting Particle swarm optimization Simulation